Overview of Wireless Sensor Network


Wireless Sensor Networks (WSNs) can be defined as a self-configured and infrastructureless wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location or sink where the data can be observed and analysed. A sink or base station acts like an interface between users and the network. One can retrieve required information from the network by injecting queries and gathering results from the sink. Typically a wireless sensor network contains hundreds of thousands of sensor nodes. The sensor nodes can communicate among themselves using radio signals. A wireless sensor node is equipped with sensing and computing devices, radio transceivers and power components. The individual nodes in a wireless sensor network (WSN) are inherently resource constrained: they have limited processing speed, storage capacity, and communication bandwidth. After the sensor nodes are deployed, they are responsible for self-organizing an appropriate network infrastructure often with multi-hop communication with them. Then the onboard sensors start collecting information of interest. Wireless sensor devices also respond to queries sent from a “control site” to perform specific instructions or provide sensing samples. The working mode of the sensor nodes may be either continuous or event driven. Global Positioning System (GPS) and local positioning algorithms can be used to obtain location and positioning information. Wireless sensor devices can be equipped with actuators to “act” upon certain conditions. These networks are sometimes more specifically referred as Wireless Sensor and Actuator Networks as described in (Akkaya et al., 2005).


10 Figures and Tables

Download Full PDF Version (Non-Commercial Use)